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Theory of quasiparticle scattering in a two-dimensional system of helical Dirac fermions:
Surface band structure of a three-dimensional topological insulator
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We study the quasiparticle interference (QPI) patterns caused by scattering off nonmagnetic, magnetic point
impurities, and edge impurities, separately, in a two-dimensional helical liquid, which describes the surface
states of a topological insulator. The unique features associated with hexagonal warping effects are identified
in the QPI patterns of charge density with nonmagnetic impurities and spin density with magnetic impurities.
The symmetry properties of the QPI patterns can be used to determine the symmetry of microscopic models.
The Friedel oscillation is calculated for edge impurities and the decay of the oscillation is not universal,
strongly depending on Fermi energy. Some discrepancies between our theoretical results and current experi-

mental observations are discussed.
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I. INTRODUCTION
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Several recent theoretica and experimenta works
have focused on a new quantum state of matter, fopological
insulators in three dimensions (3D), which exhibit bulk in-
sulating gaps (mainly of spin-orbit origin) while possess
time-reversal symmetry protected gapless surface states. One
of intriguing properties in this new quantum state comes
from those “protected” surface states, which provide a lab-
realizable condensed-matter analog of two-dimensional
(2D), massless Dirac theory with “odd” number of species
(Dirac cones), in the surface Brillouin zone (SBZ)."'° The
charge carriers on the surfaces here, the so-called (spin)
helical Dirac fermions,>!! behave like relativistic particles
with a spin locked to its momentum leading to the break-
down of the spin-SU(2) rotational symmetry. This feature is
sharply in contrast to graphene, where the system not only
possesses an even number of Dirac cones in its spectrum but
the role of the “locked” spin is also replaced by a pseudospin
(sublattice symmetry) and hence each Dirac cone still has
twofold spin degeneracy.'?

As a useful surface probe, recent angle-resolved photo-
emission spectroscopy (ARPES) experiments successfully
demonstrated the surface band structures with odd number of
Dirac cones*’ as well as the corresponding spin-helical
structures near a Dirac point.>%3 Although the confirmed na-
ture of the bands by ARPES suggests the quantum state to be
topologically insulating, the quest for new quantum phenom-
ena uniquely associated with such topology-protected sur-
face states remains urgent and necessary. The usual way in
solid-state physics to explore the nontrivial electronic prop-
erties of helical Dirac fermion systems would be the trans-
port measurement on the surface of a topological insulator.'?
However, such a measurement may not be practically
straightforward since (i) tuning the system to the topological
transport regime where the charge density vanishes is tricky
and (ii) the presence of the n-type doping from vacancy (or
antisite defects) as well as the fact that the surface states
surround the sample make the results difficult to be distin-
guished from the bulk and surface contributions.”!3

Alternatively, the quasiparticle interference (QPI) caused
by scattering-off impurities on a surface can provide a way
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of revealing the topological nature of the surface states.'4!”

The concept of QPI is elementary in quantum mechanics.
For instance, due to impurity (elastic) scattering, the interfer-
ence between the incoming and outgoing waves with mo-
menta k; and K, respectively, can give rise to an amplitude
modulation in the local density of states (LDOS) at wave
vector q=Kky—k;. Such kind of interference pattern can be
observed in Fourier-transform (FT) scanning-tunneling spec-
troscopy nowadays and it has been proved useful in deter-
mining the pairing nature of high-T, cuprates.'® By measur-
ing the QPI patterns and analyzing them through a
convolution of ARPES data together with a spin-dependent
scattering-matrix element, Roushan et al.'* were able to
demonstrate the absence of backscattering in the topological
surface states of Bi;_Sb,,, a key property of helical liquid.

Most recently, based on symmetry analysis, a new hex-
agonal warping term, which is absent in Bi;_Sb,/, is sug-
gested by Liang Fu'® to explain the evolution of the Fermi
surface of the effective 2D helical Dirac model describing
the surface band structure of a family of 3D topological in-
sulators, Bi, X3 (X=Se or Te). As measured in ARPES experi-
ments, the shape of the Fermi surface (FS) evolves gradually
from a hexagram, a hexagon, to a circle of shrinking volume,
and finally meets at the Dirac point when lowering the Fermi
energy. The new term leads to strong density variation
around Fermi surface and also modifies the spin-helical con-
figuration. As a result, the existence of the new term can
strongly modify the QPL In other words, the QPI can pro-
vide a direct evidence to justify the model.

In this paper we systematically investigate the interfer-
ence effects of a point-impurity and an edge-impurity scat-
tering, respectively, on the LDOS in a 2D helical Dirac fer-
mion system. We use 7-matrix approach to calculate QPI
spectra at a few representative energies, for emphasizing the
effects of the hexagonal warping term, in the presence of a
nonmagnetic/magnetic impurity. We also investigate an edge
impurity by using a method generalized from one-
dimensional (1D) scattering problems with a potential bar-
rier. Several profound features are found in this study. In a
nutshell, we observe: (i) the backward scattering by nonmag-
netic point impurities is topologically suppressed, just as
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what has been shown in Ref. 14 with a simpler empirical
analysis and the dominant interference pattern becomes that
of spatial period 27/|qss| when going away from the Dirac
regime (see Fig. 4 for the definition of qss); (ii) In the pres-
ence of magnetic impurity, the QPI of charge density is very
weak while that of spin density becomes strong. Near the
Dirac regime, spin moments of fermions are flipped when
scattering wave vector crosses over |q|=2|k;| as demon-
strated in the (z-component) spin LDOS [see Fig. 8(b)]; (iii)
the mirror symmetries of the spin LDOS in the presence of
in-plane magnetic impurity with spin polarization fixed along
x and y directions can be used to determine the symmetry of
microscopic models and to verify the presence or absence of
the warping term; (iv) in the case of 1D edge impurities, the
Friedel oscillation has no universal decaying function. De-
pending on Fermi-surface energy, we show that the oscilla-
tion decays as 1/v|x| if the FS shape is dominated by the
warping term and as |x|~*? if the warping term is negligible.
These special quantum phenomena, sharply in contrast to
conventional metals, are mainly associated with the 2D heli-
cal liquid.

II. THE MODEL AND T-MATRIX FORMALISM

We now briefly introduce our used formalism below. The
explicit model we study here is written as

2

k
H(k) =v(k0, — ky0o,) + - +

N

SR+, (1)
where k. =k, * ik,. v and N denote Fermi velocity and hex-
agonal warping parameter, respectively. The Pauli matrices,
o;, act on spin space of fermionic quasiparticles. The form
of H(k) is suitable for describing the [111] surface band
structure near I' point in SBZ of a 3D topological insulator
Bi, X3 and is fixed under general symmetry considerations,
namely, time-reversal and Cs, symmetries.!” Notice that we
have chosen x direction to be along I'M in SBZ. The k-linear
term, Hy=v(k,0,—k,0,), describes an isotropic 2D helical
Dirac fermions and the k-square term causes particle-hole
asymmetry. More importantly, the k-cube warping term, H,,
= %(ki+ki) 0, leads to hexagonal distortion of the Fermi sur-
face. The resulting two energy bands now touch at the Dirac
point (i.e., I" point in SBZ) with dispersion relation

2

k) = k 4+ 272 7\_2 3 3\2
€+(k) == = \/vHK*+ — (k) + k)% )
2m 4

Defining the characteristic length scale b= V\/v and energy
E*=uv/b introduced by the hexagonal warping parameter, we
draw the contours of constant energy (CCE) in momentum
space in units of 1/b and single-particle DOS of H(k), re-
spectively, in Figs. 1 and 2.

In the numerical evaluation, we have taken b=1, v
=0.25, and A=0.25 such that the Fermi surface in 0.67%
Sn-doped Bi,Te; can be qualitatively reproduced, where the
measured v=2.55 eV A and Ep=12E*~03 eV. Unless
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FIG. 1. (Color online) Contours of constant energy and the evo-
lution of FS.

otherwise stated, we will assume particle-hole symmetry, i.e.,
m*— oo, As shown in Figs. 1 and 2, when w<<0.2 the DOS is
almost linear in @ with more circular FS while when w
> (.2 the DOS behaves like w™'? with hexagramlike FS.

In addition to the CCE, we also present the spin-resolved
FS with two representative energies used throughout this pa-
per, E5=0.05 eV (0.2E) and E=0.3 eV (1.2E") in Fig. 3.
They clearly demonstrate the “spin-helical” nature of the 2D
fermions, which is indeed essential when analyzing the QPI
spectra later. In particular, as w=Ey, nonvanishing spin mo-
ments along z direction (out of surface plane) are present
mainly due to o, in the warping term, which is directly pro-
portional to electron’s spin. Notice that the spin moment
must be in-plane along I'M (i.e., at each sharp vertex of the
FS), which is a consequence of the odd parity of o, under the
mirror operation y — —y.

Next, we consider the quasiparticle scattering problem
within the T-matrix approach.?’ For a general N-impurity
problem, the impurity-induced electronic Green’s function is
given by

N
5G(r,l",w) = 2 GO(r’ri’w)T(rhrj, w)GO(r_ﬁr,,w)’ (3)

ij=1

where the 7" matrix obeys the Bethe-Salpeter equation
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FIG. 2. (Color online) Density of states based on the model in
Eq. (1).
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FIG. 3. (Color online) Spin textures around the Fermi surface at
(a) w=0.3 eV and (b) w=0.05 V).

N

T(ri’ rj, w) = Vri‘sri,rj + Vr[-E GO(ri, Iy, (l)) T(rks rj» (l)) (4)
k=1

and the Green’s function (in momentum space) of the clean
system is

Go(k,w) =[w+in-HK)]™". (5)

In the case of a single-point nonmagnetic (magnetic) im-
purity located at the origin, the scattering potential is simply
V=6, 0Vni00 (8:.0Vii0), Where oy is a 2 X 2 identity matrix.
Taking the advantages of the translational symmetry of the
clean system and momentum independence of the scattering
potential (for instance, Vy yr=Vy00/N= V in the nonmag-
netic case), one can simplify the formula as

. d’k -
T(w):{l—qu(kKA (Zﬂ_)zGo(k,w)] 1% (6)

and hence around the impurity, spatial oscillations of the
local density of states are induced. To see the interference
effects due to impurity scattering, it is more convenient to
compute the Fourier-transformed (induced) local density of
states (FT-LDOS)

) i d*k
d*re'" 8p(r,w) ~ dp(q,w) = — g(k,q,0),
f 2 e, (K)<A (2’77)2

(7

where  g(k,q,)=3%,[8G(k,k+q,0)- G (k+q.k,w)].
In general, p(q,w) is a complex number. If we separately
define the symmetric and antisymmetric parts of the LDOS
as Ps(x,y,w)=[P(x’y’w)+P(_x,—)’»w)]/2 and PA(x,y,‘U)
=[p(x,y,w)—p(=x,—y,w)]/2, the real and imaginary parts of
p(q,w) simply describe the symmetric and antisymmetric
parts of the LDOS, respectively. In the following discussion
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of the effects of nonmagnetic impurities since the real part is
at least two orders of magnitude larger than the imaginary
part, we focus on the former. In our calculation, we have
introduced an energy cutoff A=4F* when integrating over
momentum. Our main results do not sensitively depend on
the chosen A as long as A is much greater than the impurity
scattering strength. Moreover, the spin-resolved FT-LDOS
can be obtained if we separate each component i when evalu-
ating function g(k,q,w), i.e., i=1 for spin up and i=2 for
spin down.

In principle, for the case of an edge-impurity scattering,
one can use Egs. (3)-(5) to compute the LDOS from
Sp(r,w)==Im 2,6G;(r,r,w)/ 7 in a straightforward man-
ner. However, it is more convenient, without loss of gener-
ality, to treat this scattering problem by using an analogy of
the elementary scattering problem with a barrier potential in
one dimension, which is directly based on the wave-function
point of view. Our method is briefly sketched in Sec. III C.

III. NUMERICAL RESULTS

We compute the induced LDOS at selected w, dp(q,w),
for the nonmagneic/magnetic impurity case, and, p(q,,w),
for the edge-impurity case. Our numerical results are
reported for a representative potential scattering strength,
Var=Vur=Vo=0.05 eV. The chosen imaginary part of the
energy 7=10 meV has been checked to be insensitive to the
observed main features. Also, in our analysis a 400X 400
momentum grid is used in (=1, 7) X (=77, 7) k space and 200
discrete points are displayed within (-, 77) along each
direction in g space. Note that the relevant range of SBZ in
experiments would correspond to about 5.5 times larger than
2.

A. Nonmagnetic point impurity

We first consider the interference patterns in a 2D helical
liquid with a nonmagnetic point impurity. Starting with w
=Ey=0.3 eV far away from the Dirac point (w=0), the
shape of the FS is now like a hexagram. This is just the
energy range where experiment may achieve without subtle
chemical tuning near the surface of a 3D topological insula-
tor. As we will see later, such energy range indeed provide a
better chance to reveal the topological nature of the helical
Fermion system. In Fig. 4, the spectral function, A(k,w)=
—}Tlm[Tr Go(k,w)] at @w=0.3 €V, are plotted with scattering
vectors on top, which are expected to associate with high-
joint DOS on a constant-energy contour.

As shown in Fig. 5(a), the interference pattern includes
six sharp peaks along I'K outside a complicated, hexagon-
shaped pattern centered at I' and other six weaker peaks
along I'M slightly inside the hexagon. These two sets of
peaks simply correspond to (*q;3, £qss5, =qs;) and
(=412, £qr3, = q34), respectively, as indicated in Fig. 4.
However, the most prominent feature we observed here is
that those expected peaks, which correspond to the
(£q14> = qps5, = qa), are entirely absent. This apparent
puzzle can be understood by the absence of backscattering
between two time-reversal-connected partners, as shown in
Ref. 14. Suppose in our scattering problem, |k, 7T) is the in-

245317-3



ZHOU et al.

k /(nb™)

FIG. 4. (Color online) The spectral function A(k,w) at
=0.3 eV with three most possible scattering wave vectors. Note the
wave vector is in units of 7b~! and brighter region corresponds to
higher spectral weight.

coming state, while its time-reversal partner, |—k 1
«7[k, 1), is the outgoing state. 7 is the time-reversal operator
with the property 7?=~1. For any time-reversal invariant and

Hermitian operator 1% (such as our nonmagnetic scattering
potential), we have

(=, L[V, 1) = (T(k, )| V(k, 1)) = (TV(k, )| (K, 1))
=— (k. T|7Vk, )" =~ (k. | VT, T)"
=— (k. 1|VI-k ) == (- k. |[V'k, 1)
=—(-k, ||V, 1)=0. (8)

In other words, the backward scattering between time-
reversal partners is not allowed. This naturally explains the
absence of the interference peaks, corresponding to q34 (and
of the same type). Such a behavior sharply distinguishes the
2D helical Fermion system from a conventional metal. In
addition, it might be worth mentioning here that the angles of
our observed interference peaks, (35, appear different from
the experiment done by Zhang et al.,'> where there exhibits
six peaks along I'M, instead of I'K as displayed in Fig. 5(a).
We would like to postpone this issue to the discussion sec-
tion.

When further increasing the Fermi level, the vertices be-
come sharper and the joint DOS at fixed q35, however, is
suppressed. As a result, the six peaks seen in Fig. 5(a) dimin-
ish and the replaced feature turns out to be the other six
peaks at fixed q’, corresponding to the scattering vectors
connecting between second neighbor of the convex parts of
the FS (see Fig. 6), which were observed in recent
experiments.'> On the other hand, when the Fermi level gets
closer to the Dirac point, for instance, w=0.05 eV, the inter-
ference pattern becomes almost isotropic with obvious stron-
ger weight within a circular region, as shown in Fig. 5(b).
The size of the region can be estimated to be a disk with
twice longer radius of the corresponding circular FS of the
system. This is basically consistent with our CCE picture
(see Fig. 1), where no finite, specific q vectors can be picked
out when w approaches to the Dirac point.
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FIG. 5. (Color online) The real part of the Fourier transform of
local density of states in the case of single nonmagnetic point im-
purity at (a) ®=0.3 eV and (b) 0=0.05 eV.

B. Classical magnetic point impurity

Next, we study the QPI induced by a time-reversal sym-
metry breaker, a magnetic impurity.>! We focus on the effects
of a classical magnetic impurity so that the Kondo physics is
ignored. In the following, after describing general features of
the QPI with a magnetic impurity, we will discuss the cases
separately when the impurity moment is fixed along x, y, and
z directions.

Different from nonmagnetic impurities, a weak magnetic
impurity has very little effect on the charge density of
the system, namely, instead of having &p(q,w)=3dp (q,w)
as in the nonmagnetic impurity case, we have J&p(q,w)
~-0p,(q,w). This effect can be easily understood. Sup-
pose we are considering an impurity moment along the

1.0
‘ 0.08
05r Yy W " 0.06
0.04
T
g 0 . ‘ 0.02
Ea 0
. ’ -0.02
~05 .
-0.04
" -0.06
-10 -05 0 0.5 1.0

q,/(nb™)

FIG. 6. (Color online) The real part of the Fourier transform of
local density of states in the case of single nonmagnetic point im-
purity at @=0.375 eV.
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z direction then the spin-up electrons and spin-down
electrons see two scattering potentials of opposite signs. In
the lowest order of perturbation theory, the scattering
amplitude of the spin-up and spin-down electrons thus
differ by a minus sign so that the total interference pat-
tern of the charge density vanishes almost everywhere.

2
Tt 6G(q, w)]= f %Tr[Go(k,w) VGy(k +q,0)]

PHYSICAL REVIEW B 80, 245317 (2009)

The same argument no longer holds if higher orders
of perturbation are included. For the model considered here,
we can explicitly prove the above statement. Assuming

V< w, the approximation T(w) = V becomes sufficiently ac-
curate. In this case (impurity moment along z direction), we
have

A A
2 Tr{ [w(ro—kyax +ko,+ 5(ki+ki)az} o-z{ woy— (ky+q,) o+ (k + q,) o+ E[(k + q)i + (k + q)i]o-z}]

—J eny [(w+in)? - E®)][(w+in? - Ek+q)]
[ 4% { K+ K+ (k+q)1 + (k+ q)° + ik, (k. + q,) — ik, (k, +q,) } 0 )
) ew)? [w+in?-E®](w+in?- ek +q)] o

The last equality is achieved by shifting the origin to (¢,.q,),
changing the integrated variables k to —k and taking the
advantage that €,(k)=¢,(-k). Similar derivations hold for
the impurity moment along x and y directions. If the second-
order term O(V?) is included in the 7 matrix, the cancellation
becomes no longer valid and there is indeed small but finite
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FIG. 7. (Color online) The real part of the Fourier transform of
charge local density of states in the case of single magnetic point
impurity with its spin polarized along the z axis at (a) w=0.3 eV
and (b) w=0.05 eV.

charge LDOS pattern in the system. In Fig. 7, we plot the
numerical results of dp(q,w) at w=0.05 and 0.3. It is clear
that the amplitude of charge-density variation by magnetic
impurities in Fig. 7 is two orders of magnitude smaller than
that shown in Fig. 5 by nonmagnetic impurities.

Therefore, for the magnetic impurity case, we should
choose a time-reversal breaking observable to study the in-
terference and a natural choice is the spin local density of
states (SLDOS), defined by

S(r,w) =— ilm{f dt0(t)<ca(r,t)&“ﬁc;;(r,O))ei“’[ ,

(10)

where cZ(r,t) creates an electron with spin polarization « at
position r and time #. From now on we will only focus on the
FT of the z-component SLDOS.

In the case of nonmagnetic impurity, we have demon-
strated the absence of interference between |k,T) and
|-k, |}, which form a time-reversal pair. Physically, a time-
reversal breaker such as a magnetic impurity can lift this ban
on the backscattering. Similar to Eq. (8), it is easy to show
that (-k, ||V|k,7)#0 due to 7o;7'=—0, This feature is
universal in all of our figures for magnetic impurity. Taking
Fig. 8(a) as an example, we can compare it with Fig. 5(a) and
notice that although they have common features, the points
in the FT-SLDOS that associate with the 2k backscattering
scattering vectors is only present (£q4, & qas, = (36) (see
Fig. 4) in the magnetic scattering. We can also compare Fig.
8(b) for magnetic scattering with Fig. 5(b) for nonmagnetic
scattering when w=0.05 eV. In the latter case, the interfer-
ence strength universally decays quickly after reaching the
boundary of the circle; while in the former case, the interfer-
ence strength reaches a negative peak across the boundary,
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FIG. 8. (Color online) The real part of the Fourier transform of
spin local density of states in the case of single magnetic point
impurity with its spin polarized along the z axis at (a) w=0.3 eV
and (b) 0=0.05 eV.

indicating a scattering that flips spin moments of the quasi-
particles.

Now, we discuss the QPI by magnetic impurities with
in-plane magnetic moments. In this case, a unique feature
rises in the FT-SLDOS. As shown in Figs. 9 and 10, at
w=0.3 we plot two figures, which correspond to the real
and imaginary parts of the FT-SLDOS separately. Similar to
the LDOS, the real and imaginary parts correspond to the
symmetric and antisymmetric parts of S,(x,y,?), respectively.
For magnetic impurity with magnetic moment along z axis,
the symmetric part dominates and the antisymmetric part
is either vanishing or orders of magnitude smaller than
the symmetric part. However, here as shown in Fig. 9, the
antisymmetric part is about three times larger than the sym-
metric part. The result can be understood as follows. An
inversion transformation in a two-dimensional plane, i.e.,
(x,y)—(=x,—y) takes  &.(x,y,t)—d(—x,—y,r) and
Gy y(=x,=y,t)— =G, (=x,=y,1). Therefore, under this trans-
formation, the Hamiltonian without the warping term in the
presence of magnetic impurities with in-plane magnetic mo-
ments transforms as H(V,) — H(-V,), where V,, is the cou-
pling strength of magnetic impurity. Thus, from this symme-
try, if we consider S.(x,y,r) as function of V, as well, we
have S.(x,y,t,Vy)=S,(-x,—y,t,—V,). Therefore, the first-
order correction from the scattering potential vanishes for the
symmetry part. In the presence of the warping term, there is
no such an exact-symmetry argument. Nevertheless, the
symmetric part is still much smaller than the antisymmetric
part. In the following, we will first focus on the antisymmet-
ric part.
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FIG. 9. (Color online) The (a) real part and the (b) imaginary
part of the Fourier transform of spin local density of states in the
case of single magnetic point impurity with its spin polarized along
the y axis at @=0.3 eV.

Figure 9(b) shows the (antisymmetric) FT-interference
pattern for the impurity moment along the y axis at w
=0.3 eV. We find that the strongest interference appears at
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FIG. 10. (Color online) The (a) real part and the (b) imaginary
part of the Fourier transform of spin local density of states in the
case of single magnetic point impurity with its spin polarized along
the x axis at w=0.3 eV.
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wave vector *qs; in Fig. 9(b) (g;; is defined in Fig. 4).
Moreover, q;3 and (35 do not present as strong peaks, in
contrast with the cases of the nonmagnetic impurity and the
magnetic impurity spin along z axis. In addition, a remark-
able feature in the interference pattern is that S?(q, w) is zero
on the line g,=0. This is caused by an exact symmetry of the
system which dictates S.(x,y,7)=-S.(x,—y,t). This point
will be discussed later in length. Figure 10(b) shows the
(antisymmetric) FT-interference pattern for the impurity spin
along the x axis at @=0.3 eV. We can see that the strongest
interference is associated with the vertex-to-vertex wave vec-
tors ;3 and q35. The strong peak at qs5; does not appear and
we have S?(O,qy,w) vanishing. This result stems from an
approximate equality S.(x,y,f)=S.(x,—y,t), a point of
which will be discussed next.

We can understand above detailed features in the SLDOS
from the symmetry analysis of the model. The model obvi-
ously has the time-reversal symmetry and the threefold
rotation symmetry. Moreover, the model also preserves the
y— =y mirror symmetry (m,) but breaks the x— —x mirror
symmetry (m,), as can be seen in the warping term. Explic-
itly, the m, operator takes k. to k+ and o, to —o,, which
changes the sign of the warping term. Now, let us cons1der
the system in the presence of a magnetic impurity with its
spin along y axis. Since s,— s, under m,, the whole system
still preserves the mirror symmetry m,. This symmetry di-
rectly leads to

S.(x,y, @) ==8.(x,— y,w). (11)

This symmetry property is clearly demonstrated in Figs. 9(a)
and 9(b). On the other hand, if the impurity spin is
fixed along the x direction, the system does not have m,
symmetry and we have S.(x,y,w) #—S.(—x,y, w). This fea-
ture is also demonstrated in Fig. 10(a). If we had
S (x y w)——S (-x,y,w), we should have SA ) (qx,qy,w)
(= qx,qy,w) or S.(x,y,w=S.(-x,y, w) 0 . However,

in Flg 10(a), it is clear that S5 2(qy.qy, 0)= S (=4-qy,w) # 0.

The above symmetry is a very 1mp0rtant property of the
model. In fact, to simply account for the shape of FS, we
may also artificially make the Fermi velocity strongly angle
dependent while keeping the same spin texture where all
spins on the FS are in-plane without tilting. For instance, we
can write

2

_ k
() = v (K)o, = ko) 45— (12)

where v(k)=1v?+\%k* sin>(36) with 6 being the azimuthal
angle with respect to x axis (I'M). This model (the in-plane
model) has the same dispersion as the model in Eq. (1) but
has only in-plane spin texture. The symmetries of the SL-
DOS here can help us distinguish these two models. For
example, one can check these two equations experimentally:
S.(x,y,w)==S_(x,—y,w) for impurity spin polarized along y
axis and S,(x,y,w)=-S.(-x,y, w) for impurity spin polarized
along x axis. If both are held then the in-plane model suffices
but if only one is held, we may need an out-of-plane spin
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TABLE L. The symmetry of S_(x,y,) under symmetry opera-
tions of mirror-x (m,), mirror-y (m,), and threefold rotation about z
axis (C) with impurity spin along three axes. (a) is for the model in
Eq. (1) and (b) the model in Eq. (12). “1” means symmetric; “—1”
means antisymmetric and “X” means neither of the above. “=”
means it is symmetric (antisymmetric) in the weak impurity

strength approximation.

SZ my my C3
(a)

Sy X =~ X

Sy X -1 X

S, ~1 =~ 1
(b)

Sy -1 ~ X

Sy =~ -1 X

S, =~ ~ 1

(warping) term. In Table I, we list the property of SLDOS
in the two models, Egs. (1) and (12), in the presence of
different types of impurities and under basic symmetry op-
erations.

C. Nonmagnetic edge impurity

Step atomic roughness on a surface may be locally ideal-
ized into an edge impurity, that is, an infinite line with
different but uniform potential on two sides. An edge
impurity in a 2D conventional Fermi gas is known to give
rise to Friedel oscillation at fixed energy in the LDOS. This
oscillation can simply be understood as an interference pat-
tern between the incoming plane wave and the reflected
wave by the 1D edge. The major contribution comes from
the two opposite k points on the constant-energy contour,
*kp and the oscillation has the wave number 2|k;| while
decaying as a form 1/\d where d is the distance from
the edge impurity.?> The same picture is no longer valid
if the state at k and —k do not scatter with each other, a
case for the surface states of a 3D topological insulator
where the backscattering is forbidden by the time-reversal
symmetry. Therefore the oscillation is expected to decay
much faster and thus practically absent in an scanning tunnel
microscope (STM) experiment. The “absence” of the Friedel
oscillation is considered as a sign of (spin) helical Dirac
Fermion systems. However, the oscillation has been ob-
served in STM experiments.'® The apparent discrepancy be-
tween theory and experiment was soon claimed to be super-
ficial and explained by the hexagram shape of the FS.!° In
Sec. III C an exact calculation is performed to test this physi-
cal picture.

We consider that the edge impurity is fixed along y axis
and the system has zero potential for x <0 and uniform po-
tential V for x>0. A general quantum state on the left-hand
side (LHS) takes the form
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FIG. 11. (Color online) (a) The Fourier transform of the edge-

impurity (V=-0.1) interference pattern. (b) The three k’s that domi-
nate the interference pattern on the energy contour at w=0.5 eV.

(rb()(kx»ky;xay) + r¢0(_ kx’ky;X,y)

kx’kr;-x’ )= [ (13)
ok 2oy N
and the LDOS is
d*k o
p(x7 w) = k¥>0 Whﬂ(kx’ky aX,Y)| 5[(‘) - €+(kx’ky)]-
(14)

The reflection amplitude r can be obtained together with the
transmission amplitude ¢ by matching the boundary condition
at the edge, namely,

Bokeky30,) + o= kyoky30,y) = to(K], k30, y),
(15)

where k) is fixed by the energy conservation e(k,,k,)
=e(k},k,)-V.

Figure 11(a) shows the FT-LDOS for the LHS of the edge
impurity at w=0.5. We can clearly identify the two peaks in
the interference associated with ¢, =2k, and ¢g,=2kj;, defined
in Fig. 11(b). No feature is present at ¢, =2k, reflecting the
absence of backscattering. The spatial dependence of the os-
cillation, a real-space LDOS, is given in Fig. 12(a). A clear
beating pattern can be seen with spatial period ~(k;—k,)™".
The oscillation decays like 1/]x|* where a~0.46, qualita-
tively matching the theoretical prediction in the large |x|
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FIG. 12. (Color online) The real-space interference pattern for
the edge impurity (V=-0.1) at (a) ®=0.5 eV and (b) ®=0.05 eV.
The density fluctuation Jp is defined as dp=p—py=p—1. The posi-
tion x is in units of b.

limit.?>?3 When |x| is large enough, the stationary points ap-
proximation tells us that, if the edge impurity is along the y
axis, the interference pattern is dominated by the k points
where k, reaches local minimum or maximum. In our model,
ky@) are the points corresponding to the minimum (maxi-
mum) of k, on the contour of constant energy. However, The
existence of such extrema depends on w. If w is small
enough, the extrema K, 5 disappear and we are left with only
k;. Since k; is not allowed to scatter with its time-reversal
partner, the decaying of Friedel oscillation becomes |x|~/? at
large |x| [see Fig. 12(b)]. Therefore, there is no universal
function for the oscillation decay. The decay depends on the
values of parameters. There are two inherent length scales in
the model: b=V\/v and b'=v/w. If b>1.48b', the energy
contour is a hexagram and an 1/+/|x| decay of the oscillation
appears while if b<<b', we have a nearly circular FS and
the decay of oscillation takes the form p(x)~|x[=>2%. In
the intermediate range, the oscillation varies. For example, at
b=1.2b" (0=0.3), the oscillation decays exponentially for
|x| < 1005 but close to |x|~*2 for |x|>200b.

IV. DISCUSSION AND CONCLUSION

The model we have solved produces interference patterns
that have enough features to be associated with the topology-
protected surface states and the effects of the hexagonal
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warping term in 3D topological insulators. However, in order
to be more careful before making conclusions, there are two
more remarks we would like to mention here.

(i) In our calculations, we neglected the possibility of any
ordering due to interaction-induced FS instability. This is
valid as long as there is no significant FS nesting vector.!® In
addition, we do not expect strong electron-electron interac-
tion based on the following observation. In experiments on
topological insulators, the Fermi level of the sample in gen-
eral is closer to the bottom of the conduction band and is far
away from the Dirac point. Such a system with finite density
of states may provide enough screening effect to Coulomb
interaction between surface electrons. Moreover, attempting
to tune the Fermi level lower by a metallic gate may also
lead to the same phenomenon, turning interaction between
electrons into irrelevant regime.

(ii) In real systems, there is no “purely magnetic” impu-
rity. A magnetic impurity should also have a nonmagnetic
component. This fact does not change our results obtained
for magnetic impurities. In the parameter region we choose,
the weak impurity approximation is always valid (see a de-
tailed discussion of this approximation in the Appendix A),
the nonmagnetic impurity only leads to the charge-density
modulation and has little effect on the SLDOS. Namely, the
magnetic part of impurity is solely responsible for the SL-
DOS.

(iii) As we noticed in Sec. IIT A, the STM experiment
done by Zhang et al."> on [111] surface of Bi,Te; exhibited
six peaks in FT-LDOS for the case of nonmagnetic impuri-
ties. The experimental result differs from our results shown
in Fig. 5(a) by a 30° of rotation. However, this discrepancy
can be understood by noticing that in the energy range where
they observed the clear interference patterns (50-400 meV),
the surface density of states are mixed with bulk states along
I’'M. Consequently, due to the superposition of waves with
various wavelengths the interference patterns are simply
smeared out in these regions. Instead of a full FS we consid-
ered here, the dominant interference patterns are then from
other unmixed parts of the FS, i.e., the parts along I'K.

(iv) In an STM experiment done by Alpichshev et al.,'s
the decaying behavior of the Friedel oscillation was claimed
to be 1/]x|. However, in the case of 1D edge impurities, our
calculation shows 1/|x|'? behavior if the FS shape is domi-
nated by the warping term and |x|~? if the warping term is
negligible. We believe there are two possible sources of the
discrepancy. First, we notice that a simple fitting to the first
several periods of oscillation is not enough to determine the
decaying behavior. In Fig. 13, we show that the data in Ref.
16 can also be well fitted using an exponentially decaying
function as opposed to the 1/|x|-type fit used in Ref. 16.
Second, the experimental measurements are not a pure sur-
face effect. There are bulk electrons in the nearby conduction
band which can cause different decaying behavior and com-
plicate the issue. More future experimental measurements are
necessary to resolve the issue and test the theoretical predic-
tions.

(v) We also notice that a similar theoretical work?* focus-
ing solely on nonmagnetic impurity was posted online
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FIG. 13. (Color online) Fitting the experimental data of Ref. 16
using different oscillating functions. The experimental energy
—62 meV corresponds to ~0.25 eV in our units. In the exponential
fit, d=107 A.

recently, which suggests the peaks at fixed q’s that corre-
spond to the scattering vectors connecting between second
neighbor of the convex parts, and between the nearest neigh-
bor of the vertices of the FS dominate in the QPI patterns.
Their results are consistent with our calculations since their
results, according to the energy unit in our paper, are ob-
tained at w=0.375 eV. However, our results suggest that the
relative strength between the interference at q’s connecting
next-nearest-neighboring vertices (e.g., q3s) and the interfer-
ence at (’s connecting next-nearest-neighboring arc centers
(e.g., qyr4/) in the QPI patterns is quite subtle and depends
on energy. Therefore, a full 7-matrix calculation is necessary
in calculating the QPI patterns.

In conclusion, we have investigated the quasiparticle scat-
tering in a 2D helical liquid in the presence of nonmagnetic/
magnetic point impurity or a nonmagnetic edge impurity.
The inclusion of the hexagonal warping term in our system
not only inherits the nature of the k-linear helical liquid but
also sharpens our features mentioned above by distorting the
shape of the FS. More importantly, it requires an out-of-
plane spin texture and can be distinguished from other sys-
tems with examination of the mirror symmetries when the
magnetic point impurity with in-plane spin moment is
present. The absence (presence) of spots in FT-LDOS (FT-
SLDOS), corresponding to the backscattering interference,
are the essential features to confirm the topological nature of
the helical liquid. The results in our work, as may be de-
tected by STM experiments, can be a useful quantum signa-
ture, which is uniquely associated with this phase of matter,
a 3D topological insulator.
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APPENDIX A: THE WEAK IMPURITY STRENGTH
APPROXIMATION

For the parameter we used throughout the paper, the scat-
tering strength is relatively small (i.e., Vop(w)<<1). In this

limit the approximation 7T(w)=~V is considerably accurate
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(less than 3% error in our case) and many approximate
equalities may be derived thereof. This appendix is devoted
to explicitly deriving these relations.

First we prove that for a purely magnetic impurity, the
induced (charge) LDOS is almost zero everywhere. We
prove this by showing Tr[ 5G(q, w)]~0. Within the approxi-
mation, we have

2
Tt 86G(q, w)] = f %Tr[co(k,w)f/@)(m q.0)]

d*k
=V, f mTr[Go(k, 0)0,Gyk +q,w)].
(A1)

In the equation above we do not specify the spin polarization
of the impurity and the result is general. Noticing that the
system is invariant under time-reversal operation (C=io,),

ie, CH(Kk)C'=H'(-k) and that a magnetic 1mpur1ty
changes sign under the same operation, i.e., Co,C~'= (rlT,
we have

2

dk
Sz(q, 0)) = Tr[5G((l,w)0'z] = f (2 )2
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fd—ZkT Gy(k Gyk
g 1 Gy(k,w)5;:Gy(k + q, )]

2

k
= mTr[CGO(k, 0)0,Go(k + bg,w)C "]

f —Ti[GH(-k,0)0! GH(-k - q,w)]

2
- dﬂlTr[Go( k - q,0)0,Gy(- k,w)]=0.

(A2)

The last equality may be understood after changing variables
k—-k—q.

Next we show that the approximate symmetries listed in
part (a) of Table I hold within the same approximation. Ac-
cording to the table, we have, for impurity spin (again it is a
purely magnetic impurity) along the z axis, the SLDOS
S,(x,y,t)=S,(=x,y,t), which is equivalent to S.(q,.q,,w)
~S8,(=q,,qy,w). This may be derived in the following way:

Tr[Go(k (,U) VGo(k +q, w)O' ]

A A
P Tr{ [wa‘o —kyo, + ko, + 5(/{}r + ki)a’z] O'Z{ woy = (ky+gy) o+ (k,+ g, )0, + 5[(/( + q)fr + (k+ q)i]az}}

=V

(A3)

(2m)? [(w+in*-e®](o+in - e(k+q)]
2
o o+ ky(ky + q,) + k(K + ) + )\Z(ki +I)[(k+q)? + (k- q)°]
=V ) eor? [(w+in?- W ](@+in'-Ek+q)]

In deriving the last equality, we notice that e(k,,k,)=e(

k.,k,) and change variables as k,— —k,. In the second col-
umn of part (a) of Table I, we find S.(x,y,r) =S,(x,—y,t) for
the impurity spin in x and z directions. Since U),H(kx, ky) o,
=H(k,,~k,), we have

S.(q::qy, )

d*k
f47TzTr[G0(kx, @), Golk, + gk, + gy, 0) 0]

2
fdkTr[GO(kx’ kyw)( O-xz)

472
XGolky+ g~ ky =gy, w) (= 0,)]
d’k
4772Tr[G0(kx, ,0)0, Golk, + q,.k, = gy, 0) 0, ]
= Sz(qx’_ CIy’ w) . (A4)

A simple consequence of the weak impurity approximation is

= Sz(_ 9 qy» w) .

a linear combination of LDOS or SLDOS when there is more
than one impurity, or an impurity that has both magnetic and
nonmagnetic parts. In the latter case, one can simply add up
the FT-LDOS and FT-SLDOS for each part to obtain the total
configuration. But as discussed in the text, the magnetic part
contributes very little to the LDOS and the nonmagnetic part
does not contribute to the SLDOS (obvious from time-
reversal symmetry), most of the results for the magnetic im-
purity part remain the same.

APPENDIX B: FRIEDEL OSCILLATION AT FIXED
ENERGY IN A 2D DIRAC METAL BY AN EDGE IMPURITY

In the text, we stated that when the energy lies within the
“Dirac regime” (e.g., when w=0.05 eV), the decay of the
Friedel oscillation takes the form p(x, w) % |x|~*2. In this ap-
pendix the asymptotic expression for the LDOS oscillation
caused by an edge impurity in a 2D Dirac metal is derived.
The Hamiltonian takes the form
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H(K)=vk-o. (B1)

This form is equivalent to the linear part in Eq. (1) up to a
global spin-SU(2) gauge. The Hamiltonian may be easily
solved: (only positive-energy solutions are listed)

ek) = vk,

lﬂ(k) - (ei¢/2’e—i¢/2)T/ VE, (B2)

where ¢ being the polar angle. Now let us suppose that the
space is divided in half at x=0 (i.e., the edge impurity is
along y axis) and the right side has a uniform potential of
V=-V,, where V;,> 0. The continuity of the wave function at
x=0 gives

ei¢/2 ei¢’/2 ei¢”/2
oi92 +F(¢) e—i¢”/2 =t(¢) e_i‘ﬁ”/z . (B3)

For the refraction part, ¢" is fixed by
vk+V,

sin(¢”) = k sin(¢). (B4)

And for the reflection part, ¢'=m—¢. Solving these equa-

tions, one has
.<¢—¢>
sin| ———
2

COos
2
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I:M, (BS)

( ”)
COS
2

Using the stationary phase approximation, we know that
after integrating all the K’s on the fixed energy contour w
=vk to obtain the LDOS, the contribution mainly comes
from the k’s that have small polar angles. At small angles,
the reflection index takes the form

D= o (B6)
Using Eq. (14), we have
( )~f”/2d_¢L2.<2_w ())
plx,w) = » 2’7TV0+(.0¢ sin » cos(d)x

~ f d_d)ilm[ ¢2€i2w/v cos(d))x]

L 2mVyt+w

Vo \m (2 20 |32
%—Oﬂcos(—wx—lT)(—wx) . (B7)
Vo+w 4 v 4/\ v
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